
SMASH:
THE SERENITY MANAGEMENT SHELL
ANDY ROSE, IMPERIAL COLLEGE LONDON



WHY?

• The usual problem in writing generic, reusable control software is the complex 

interdependence of different components



EXAMPLE

• To configure to an optical module you may first need to talk via I2C to a port-

expander to read the module-present signal to check that the optical module 

is present; to then configure the port-expander via I2C to asset the optical 

module’s module-select line; to talk I2C to the optical module itself; and to 

reconfigure the port-expander via I2C to deassert the optical module’s 

module-select line.



BUT…

• The simple statement of “talk via I2C” may, itself, mask myriad complexities 

since this may be two independent I2C buses for the port-expander and the 

optical module; if our software is running on a device without embedded I2C 

controllers, we shall require an additional transport-layer to talk to a device 

which converts PCIe, USB or Ethernet to I2C.



AND…

• If the I2C port-expander becomes deprecated

• Or we chose to drive the module-present and -select line from the GPIO of an 

FPGA or SOC

• Or your pesky hardware designer inserts an I2C bus-multiplexer on the I2C 

bus which itself requires its own layer of configuration

• Then there is typically nothing for it but to write completely new software, 

copying-and-pasting your old code, and hacking it around. 



AND…

• If the I2C port-expander becomes deprecated

• Or we chose to drive the module-present and -select line from the GPIO of an 

FPGA or SOC

• Or your pesky hardware designer inserts an I2C bus-multiplexer on the I2C 

bus which itself requires its own layer of configuration

• Then there is typically nothing for it but to write completely new software, 

copying-and-pasting your old code, and hacking it around. 

NEW BOARD REVISION = NEW SOFTWARE



IN THE PAST

• Major structural changes to a board design and entirely new board designs 

happened on a sufficiently infrequent basis as to be manageable, albeit 

inefficient, way of working.



SERENITY’S PROBLEM

• Its has a paradigm of structural reconfigurability

• It uses pluggable modules:

• Different types or counts of FPGAs

• With or without a QSFP

• Different numbers, directions and speeds of serial links

• Passive-electrical, or uni- or bi-directional, 16G or 28G firefly optics. 



SERENITY’S PROBLEM

• Its has a paradigm of structural reconfigurability

• It uses pluggable modules:

• Different types or counts of FPGAs

• With or without a QSFP

• Different numbers, directions and speeds of serial links

• Passive-electrical, or uni- or bi-directional, 16G or 28G firefly optics. 

• And with proposals for alternative form-factors and for different control 

modules (such as SOCs) this problem would only get worse.



THAT IS “WHY SMASH”!



HOW SMASH?

• SMASH builds, in software, a mirror image of the hardware and firmware



HOW SMASH?



HOW SMASH?

• Each type of hardware or firmware has a separate class representation, 

which is referred to as an “element”.

• Each element is a self-contained entity and has no dependence on any other 

element.



HOW SMASH?

• Like physical components, which interact with each other by exposing 

interfaces, be that GPIO, I2C, SPI, JTAG, USB, GbE, PCIe or some other, so do 

SMASH elements.

• SMASH elements do this through bound function calls, which in SMASH 

parlance are called “ports”.



HOW SMASH?

• Any element which provides a service, such as an I2C master or a GPIO-

driver, creates and exposes a port.

• Any element which uses a service, such as an I2C slave or a component 

configured by a GPIO, uses a copy of a bound function (not caring where it 

came from) as a tool to perform the required operation

• It has and needs no knowledge of the mechanism by which it is implemented, maintaining 

the conceptual independence of the service provider and the service consumer



HOW SMASH?

• Ports are native C function calls

• Because of the diversity of hardware, firmware and software elements, all 

exposed interfaces (other than the “ports”) use strings as the interface 

mechanism

• Which has the additional advantage of making SMASH highly suitable for scripting and 

interactive use.



IS IT JUST FOR SERENITY?

• No, it was developed for Serenity, but has already been used on

• Two different revisions of Serenity

• Serenity in different form-factors (i.e. with a pizzabox adapter mezzanine)

• Prototype Serenity Board Tester

• Serenity 1.2 Daughter-Card Tester

• Bodged-together systems using an old PC, an old passive board, and some long lengths 

of wire



IS IT JUST FOR SERENITY?

• No, it was developed for Serenity, but has already been used on

• Two different revisions of Serenity

• Prototype Serenity Board Tester

• Serenity 1.2 Daughter-Card Tester

• Bodged-together systems using an old PC, an old passive board, and some long lengths 

of wire

• My definition of generic truly means generic



DETAILS

• Currently run as an executable

• Plan is to make it a kernel process – a daemon – that user-code interacts with



DETAILS

• A board is described 

by a plain text 

configuration file

• Same scripting 

interface as the 

interactive terminal



DETAILS

• The binding of component

(joining the wires) is also 

done in via the same plain 

text interface



DETAILS

• And you can configure the 

board via scripts using the 

same scripting interface 

• Or you can do it via an 

interactive terminal



DETAILS

Call the scripts which describe the board 



DETAILS

Create a daughter-card and plug it onto the board 



DETAILS

Add a PCIe interface to the FPGA on the Daughtercard



DETAILS

Configure a component



DETAILS

Configure the JTAG chain

Bind an XVC – a “software component” – to the FPGA



DETAILS

“Measure” values from the component



DETAILS

Get the software to check it’s hardware counterpart

(whatever that may mean)



DETAILS

PCIe management



DETAILS

Load a bitstream directly from file

Note – this involves converting the bitfile

to a JTAG stream in software then sending 

the JTAG data over IPbus over PCIe

The user sees none of this


